Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
Methods Enzymol ; 675: 235-273, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36220272

RESUMO

Protein phosphorylation is the most common post-translational modification of proteins and functions as a molecular switch for their regulation. This modification is reversibly regulated by protein kinases and phosphatases. In most cases, the phosphorylation of enzymes positively or negatively regulates enzyme activity. However, we found that the phosphorylation of DDHD1 phospholipase A1 (PLA1) did not affect PLA1 activity. Integrated analyses, including phospho-proteomics, Phos-tag SDS-PAGE, PLA1 enzyme assays, and immunofluorescent microscopy, revealed the subcellular localization of DDHD1 without greatly affecting its PLA1 activity. Our findings may contribute to understanding rare clinical cases that concern the implications of protein phosphorylation.


Assuntos
Monoéster Fosfórico Hidrolases , Proteínas Quinases , Humanos , Fosfolipases A1/genética , Fosforilação
2.
Proc Natl Acad Sci U S A ; 119(27): e2100036119, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35771940

RESUMO

Native Americans domesticated maize (Zea mays ssp. mays) from lowland teosinte parviglumis (Zea mays ssp. parviglumis) in the warm Mexican southwest and brought it to the highlands of Mexico and South America where it was exposed to lower temperatures that imposed strong selection on flowering time. Phospholipids are important metabolites in plant responses to low-temperature and phosphorus availability and have been suggested to influence flowering time. Here, we combined linkage mapping with genome scans to identify High PhosphatidylCholine 1 (HPC1), a gene that encodes a phospholipase A1 enzyme, as a major driver of phospholipid variation in highland maize. Common garden experiments demonstrated strong genotype-by-environment interactions associated with variation at HPC1, with the highland HPC1 allele leading to higher fitness in highlands, possibly by hastening flowering. The highland maize HPC1 variant resulted in impaired function of the encoded protein due to a polymorphism in a highly conserved sequence. A meta-analysis across HPC1 orthologs indicated a strong association between the identity of the amino acid at this position and optimal growth in prokaryotes. Mutagenesis of HPC1 via genome editing validated its role in regulating phospholipid metabolism. Finally, we showed that the highland HPC1 allele entered cultivated maize by introgression from the wild highland teosinte Zea mays ssp. mexicana and has been maintained in maize breeding lines from the Northern United States, Canada, and Europe. Thus, HPC1 introgressed from teosinte mexicana underlies a large metabolic QTL that modulates phosphatidylcholine levels and has an adaptive effect at least in part via induction of early flowering time.


Assuntos
Adaptação Fisiológica , Flores , Interação Gene-Ambiente , Fosfatidilcolinas , Fosfolipases A1 , Proteínas de Plantas , Zea mays , Alelos , Mapeamento Cromossômico , Flores/genética , Flores/metabolismo , Genes de Plantas , Ligação Genética , Fosfatidilcolinas/metabolismo , Fosfolipases A1/classificação , Fosfolipases A1/genética , Fosfolipases A1/metabolismo , Proteínas de Plantas/classificação , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Zea mays/genética , Zea mays/crescimento & desenvolvimento
3.
Int J Mol Sci ; 22(23)2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34884486

RESUMO

Lysophosphatidylserine (lysoPS) is known to regulate immune cell functions. Phospholipase A1 member A (PLA1A) can generate this bioactive lipid through hydrolysis of sn-1 fatty acids on phosphatidylserine (PS). PLA1A has been associated with cancer metastasis, asthma, as well as acute coronary syndrome. However, the functions of PLA1A in the development of systemic autoimmune rheumatic diseases remain elusive. To investigate the possible implication of PLA1A during rheumatic diseases, we monitored PLA1A in synovial fluids from patients with rheumatoid arthritis and plasma of early-diagnosed arthritis (EA) patients and clinically stable systemic lupus erythematosus (SLE) patients. We used human primary fibroblast-like synoviocytes (FLSs) to evaluate the PLA1A-induced biological responses. Our results highlighted that the plasma concentrations of PLA1A in EA and SLE patients were elevated compared to healthy donors. High concentrations of PLA1A were also detected in synovial fluids from rheumatoid arthritis patients compared to those from osteoarthritis (OA) and gout patients. The origin of PLA1A in FLSs and the arthritic joints remained unknown, as healthy human primary FLSs does not express the PLA1A transcript. Besides, the addition of recombinant PLA1A stimulated cultured human primary FLSs to secrete IL-8. Preincubation with heparin, autotaxin (ATX) inhibitor HA130 or lysophosphatidic acid (LPA) receptor antagonist Ki16425 reduced PLA1A-induced-secretion of IL-8. Our data suggested that FLS-associated PLA1A cleaves membrane-exposed PS into lysoPS, which is subsequently converted to LPA by ATX. Since primary FLSs do not express any lysoPS receptors, the data suggested PLA1A-mediated pro-inflammatory responses through the ATX-LPA receptor signaling axis.


Assuntos
Artrite/patologia , Fibroblastos/patologia , Gota/patologia , Lúpus Eritematoso Sistêmico/patologia , Fosfolipases A1/metabolismo , Diester Fosfórico Hidrolases/metabolismo , Receptores de Ácidos Lisofosfatídicos/metabolismo , Sinoviócitos/patologia , Artrite/genética , Artrite/imunologia , Artrite/metabolismo , Estudos de Casos e Controles , Feminino , Fibroblastos/imunologia , Fibroblastos/metabolismo , Gota/genética , Gota/imunologia , Gota/metabolismo , Humanos , Lúpus Eritematoso Sistêmico/genética , Lúpus Eritematoso Sistêmico/imunologia , Lúpus Eritematoso Sistêmico/metabolismo , Masculino , Fosfolipases A1/genética , Diester Fosfórico Hidrolases/genética , Receptores de Ácidos Lisofosfatídicos/genética , Líquido Sinovial/imunologia , Líquido Sinovial/metabolismo , Sinoviócitos/imunologia , Sinoviócitos/metabolismo
4.
Int J Biol Macromol ; 192: 1058-1074, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34656543

RESUMO

Cotton is the most important crop for the production of natural fibres used in the textile industry. High salinity, drought, cold and high temperature represent serious abiotic stresses, which seriously threaten cotton production. Phospholipase AS has an irreplaceable role in lipid signal transmission, growth and development and stress events. Phospholipase A can be divided into three families: PLA1, PLA2 and pPLA. Among them, the PLA1 family is rarely studied in plants. In order to study the potential functions of the PLA1 family in cotton, the bioinformatics analysis of the PLA1 family was correlated with cotton adversity, and tissue-specific analysis was performed. Explore the structure-function relationship of PLA1 members. It is found that the expression of GbPLA1-32 gene is affected by a variety of environmental stimuli, indicating that it plays a very important role in stress and hormone response, and closely associates the cotton adversity with this family. Through further functional verification, we found that virus-induced GbPLA1-32 gene silencing (VIGS) caused Gossypium barbadense to be sensitive to salt stress. This research provides an important basis for further research on the molecular mechanism of cotton resistance to abiotic stress.


Assuntos
Regulação da Expressão Gênica de Plantas , Gossypium/fisiologia , Família Multigênica , Fosfolipases A1/genética , Estresse Fisiológico/genética , Motivos de Aminoácidos , Biomarcadores , Mapeamento Cromossômico , Cromossomos de Plantas , Sequência Conservada , Bases de Dados Genéticas , Secas , Evolução Molecular , Perfilação da Expressão Gênica , Estudo de Associação Genômica Ampla , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regiões Promotoras Genéticas , Transporte Proteico , Elementos de Resposta , Estresse Salino
5.
Molecules ; 26(13)2021 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-34203222

RESUMO

The effect of cultivation temperatures (37, 26, and 18 °C) on the conformational quality of Yersinia pseudotuberculosis phospholipase A1 (PldA) in inclusion bodies (IBs) was studied using green fluorescent protein (GFP) as a folding reporter. GFP was fused to the C-terminus of PldA to form the PldA-GFP chimeric protein. It was found that the maximum level of fluorescence and expression of the chimeric protein is observed in cells grown at 18 °C, while at 37 °C no formation of fluorescently active forms of PldA-GFP occurs. The size, stability in denaturant solutions, and enzymatic and biological activity of PldA-GFP IBs expressed at 18 °C, as well as the secondary structure and arrangement of protein molecules inside the IBs, were studied. Solubilization of the chimeric protein from IBs in urea and SDS is accompanied by its denaturation. The obtained data show the structural heterogeneity of PldA-GFP IBs. It can be assumed that compactly packed, properly folded, proteolytic resistant, and structurally less organized, susceptible to proteolysis polypeptides can coexist in PldA-GFP IBs. The use of GFP as a fusion partner improves the conformational quality of PldA, but negatively affects its enzymatic activity. The PldA-GFP IBs are not toxic to eukaryotic cells and have the property to penetrate neuroblastoma cells. Data presented in the work show that the GFP-marker can be useful not only as target protein folding indicator, but also as a tool for studying the molecular organization of IBs, their morphology, and localization in E. coli, as well as for visualization of IBs interactions with eukaryotic cells.


Assuntos
Proteínas de Bactérias/química , Proteínas de Fluorescência Verde/química , Corpos de Inclusão/química , Fosfolipases A1/química , Proteínas Recombinantes de Fusão/química , Yersinia pseudotuberculosis/genética , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Fluorescência Verde/biossíntese , Proteínas de Fluorescência Verde/genética , Corpos de Inclusão/genética , Corpos de Inclusão/metabolismo , Fosfolipases A1/biossíntese , Fosfolipases A1/genética , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/genética , Yersinia pseudotuberculosis/enzimologia
6.
J Biol Chem ; 297(1): 100851, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34089703

RESUMO

Phospholipase A1 (PLA1) hydrolyzes the fatty acids of glycerophospholipids, which are structural components of the cellular membrane. Genetic mutations in DDHD1, an intracellular PLA1, result in hereditary spastic paraplegia (HSP) in humans. However, the regulation of DDHD1 activity has not yet been elucidated in detail. In the present study, we examined the phosphorylation of DDHD1 and identified the responsible protein kinases. We performed MALDI-TOF MS/MS analysis and Phos-tag SDS-PAGE in alanine-substitution mutants in HEK293 cells and revealed multiple phosphorylation sites in human DDHD1, primarily Ser8, Ser11, Ser723, and Ser727. The treatment of cells with a protein phosphatase inhibitor induced the hyperphosphorylation of DDHD1, suggesting that multisite phosphorylation occurred not only at these major, but also at minor sites. Site-specific kinase-substrate prediction algorithms and in vitro kinase analyses indicated that cyclin-dependent kinase CDK1/cyclin A2 phosphorylated Ser8, Ser11, and Ser727 in DDHD1 with a preference for Ser11 and that CDK5/p35 also phosphorylated Ser11 and Ser727 with a preference for Ser11. In addition, casein kinase CK2α1 was found to phosphorylate Ser104, although this was not a major phosphorylation site in cultivated HEK293 cells. The evaluation of the effects of phosphorylation revealed that the phosphorylation mimic mutants S11/727E exhibit only 20% reduction in PLA1 activity. However, the phosphorylation mimics were mainly localized to focal adhesions, whereas the phosphorylation-resistant mutants S11/727A were not. This suggested that phosphorylation alters the subcellular localization of DDHD1 without greatly affecting its PLA1 activity.


Assuntos
Proteína Quinase CDC2/genética , Ciclina A2/genética , Fosfolipases A1/genética , Proteína Quinase CDC2/química , Membrana Celular/química , Membrana Celular/genética , Ciclina A2/química , Glicerofosfolipídeos/química , Glicerofosfolipídeos/genética , Células HEK293 , Humanos , Fosfolipases A1/química , Fosfolipases A1/metabolismo , Fosforilação/genética , Paraplegia Espástica Hereditária/genética , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
7.
Sci Rep ; 11(1): 6056, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33723350

RESUMO

BRAF and NRAS are the most reported mutations associated to melanomagenesis. The lack of accurate diagnostic markers in response to therapeutic treatment in BRAF/NRAS-driven melanomagenesis is one of the main challenges in melanoma personalized therapy. In order to assess the diagnostic value of phosphatidylserine-specific phospholipase A1-alpha (PLA1A), a potent lysophospholipid mediating the production of lysophosphatidylserine, PLA1A mRNA and serum levels were compared in subjects with malignant melanoma (n = 18), primary melanoma (n = 13), and healthy subjects (n = 10). Additionally, the correlation between histopathological subtypes of BRAF/NRAS-mutated melanoma and PLA1A was analyzed. PLA1A expression was significantly increased during melanogenesis and positively correlated to disease severity and histopathological markers of metastatic melanoma. PLA1A mRNA and serum levels were significantly higher in patients with BRAF-mutated melanoma compared to the patients with NRAS-mutated melanoma. Notably, PLA1A can be used as a diagnostic marker for an efficient discrimination between naïve melanoma samples and advanced melanoma samples (sensitivity 91%, specificity 57%, and AUC 0.99), as well as BRAF-mutated melanoma samples (sensitivity 62%, specificity 61%, and AUC 0.75). Our findings suggest that PLA1A can be considered as a potential diagnostic marker for advanced and BRAF-mutated melanoma.


Assuntos
Biomarcadores Tumorais/biossíntese , Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Melanoma , Fosfolipases A1/biossíntese , Proteínas Proto-Oncogênicas B-raf/metabolismo , Adulto , Idoso , Biomarcadores Tumorais/genética , Feminino , Humanos , Masculino , Melanoma/diagnóstico , Melanoma/enzimologia , Melanoma/genética , Pessoa de Meia-Idade , Fosfolipases A1/genética , Proteínas Proto-Oncogênicas B-raf/genética
8.
Int J Mol Sci ; 21(23)2020 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-33255510

RESUMO

DEFECTIVE IN ANTHER DEHISCENCE 1 (DAD1), a phospholipase A1, utilizes galactolipids (18:3) to generate α-linolenic acid (ALA) in the initial step of jasmonic acid (JA) biosynthesis in Arabidopsis thaliana. In this study, we isolated the JcDAD1 gene, an ortholog of Arabidopsis DAD1 in Jatropha curcas, and found that it is mainly expressed in the stems, roots, and male flowers of Jatropha. JcDAD1-RNAi transgenic plants with low endogenous jasmonate levels in inflorescences exhibited more and larger flowers, as well as a few abortive female flowers, although anther and pollen development were normal. In addition, fruit number was increased and the seed size, weight, and oil contents were reduced in the transgenic Jatropha plants. These results indicate that JcDAD1 regulates the development of flowers and fruits through the JA biosynthesis pathway, but does not alter androecium development in Jatropha. These findings strengthen our understanding of the roles of JA and DAD1 in the regulation of floral development in woody perennial plants.


Assuntos
Proteínas de Arabidopsis/genética , Frutas/genética , Jatropha/genética , Fosfolipases A1/genética , Plantas Geneticamente Modificadas/genética , Arabidopsis/genética , Ciclopentanos/metabolismo , Flores/genética , Flores/crescimento & desenvolvimento , Frutas/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas/genética , Inativação Gênica , Jatropha/crescimento & desenvolvimento , Oxilipinas/metabolismo , Desenvolvimento Vegetal/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Sementes/genética , Sementes/crescimento & desenvolvimento
9.
Microb Pathog ; 141: 104010, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32004623

RESUMO

Leishmaniasis is caused by several species of protozoan parasites of the genus Leishmania and represents an important global health problem. Leishmania braziliensis in particular is responsible of cutaneous and mucocutaneous forms of this parasitosis, with prevalence in Latin America. In the present work, we describe in L. braziliensis promastigotes and amastigotes the presence of a Phospholipase A1 (PLA1) activity, an enzyme that catalyses extensive deacylation of phospholipids like phosphatidylcholine. In order to deepen the knowledge about L. braziliensis PLA1, the cloning and expression of the gene that codifies for this enzyme was carried out in a baculovirus expression system with the obtaintion of a purified recombinant protein that displayed PLA1 activity. Given that this is the first molecular and functional protein characterization of a PLA1 in the Leishmania genus, we also performed a phylogenetic analysis of this gene throughout 12 species whose genome sequences were available. The results presented here will contribute to increase the knowledge about trypanosome phospholipases, which could be novel and valuable as potential targets to fight neglected diseases like Leishmaniasis.


Assuntos
Leishmania braziliensis , Fosfolipases A1 , Animais , Baculoviridae/genética , Clonagem Molecular/métodos , Expressão Gênica , Genes de Protozoários , América Latina , Leishmania braziliensis/genética , Leishmania braziliensis/metabolismo , Leishmaniose Cutânea/parasitologia , Fosfolipases A1/genética , Fosfolipases A1/isolamento & purificação , Fosfolipases A1/metabolismo , Filogenia , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Células Sf9
10.
Biochem Biophys Res Commun ; 518(4): 644-650, 2019 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-31466721

RESUMO

Phospholipases A1 (PLA1s) catalyze the hydrolysis of sn-1 linkage in the glycerophospholipids, thereby releasing fatty acids and 2-acyl lysophospholipids. PLA1s are found in various organisms and tissues where they play diverse cellular functions, but their roles in filamentous fungi remain elusive. In this study we analyzed the enzymatic properties and physiological functions of two secretory PLA1s, PLA1-1 and its paralog PLA1-2, in the filamentous fungus Aspergillus oryzae. Although PLA1-1 and PLA1-2 share 49% amino acid sequence identity, they significantly differ in various aspects. While PLA1-1 displayed PLA1 activity to phosphatidylcholine and phosphatidylethanolamine, and degraded various phospholipids, PLA1-2 exhibited PLA1 activity only to phosphatidylglycerol. PLA1-1 was secreted to the culture medium, but PLA1-2 was not secreted and retained in the mycelium. Fluorescence microscopic observation of A. oryzae strains expressing EGFP-fused PLA1-1 and PLA1-2 demonstrated that they display overlapping but distinct cellular localization. A. oryzae mutants deleted for pla1-1 or pla1-2 grew normally, but the secreted phospholipase activity was significantly reduced in the Δpla1-1 strain. These data suggest that two sPLA1 enzymes are not redundant and play distinct cellular functions in A. oryzae.


Assuntos
Aspergillus oryzae/enzimologia , Proteínas Fúngicas/metabolismo , Fosfatidilcolinas/metabolismo , Fosfatidiletanolaminas/metabolismo , Fosfatidilgliceróis/metabolismo , Fosfolipases A1/metabolismo , Aspergillus oryzae/genética , Proteínas Fúngicas/genética , Hidrólise , Isoenzimas/genética , Isoenzimas/metabolismo , Microscopia de Fluorescência , Mutação , Micélio/enzimologia , Micélio/genética , Fosfolipases A1/genética , Fosfolipídeos/metabolismo
11.
Virol Sin ; 34(5): 521-537, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31161554

RESUMO

The phosphatidylserine-specific phospholipase A1 (PLA1A) is an essential host factor in hepatitis C virus (HCV) assembly. In this study, we mapped the E2, NS2 and NS5A involved in PLA1A interaction to their lumenal domains and membranous parts, through which they form oligomeric protein complexes to participate in HCV assembly. Multiple regions of PLA1A were involved in their interaction and complex formation. Furthermore, the results represented structures with PLA1A and E2 in closer proximity than NS2 and NS5A, and strongly suggest PLA1A-E2's physical interaction in cells. Meanwhile, we mapped the NS5A sequence which participated in PLA1A interaction with the C-terminus of domain 1. Interestingly, these amino acids in the sequence are also essential for viral RNA replication. Further experiments revealed that these four proteins interact with each other. Moreover, PLA1A expression levels were elevated in livers from HCV-infected patients. In conclusion, we exposed the structural determinants of PLA1A, E2, NS2 and NS5A proteins which were important for HCV assembly and provided a detailed characterization of PLA1A in HCV assembly.


Assuntos
Hepacivirus/fisiologia , Fosfatidilserinas/química , Fosfolipases A1/química , Proteínas do Envelope Viral/química , Montagem de Vírus , Linhagem Celular Tumoral , Hepatite C/virologia , Interações Hospedeiro-Patógeno , Humanos , Fígado/virologia , Fosfolipases A1/genética , RNA Viral/metabolismo , Proteínas do Envelope Viral/genética , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/genética
12.
Plant Physiol ; 180(3): 1691-1708, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31123095

RESUMO

Singlet oxygen produced from triplet excited chlorophylls in photosynthesis is a signal molecule that can induce programmed cell death (PCD) through the action of the OXIDATIVE STRESS INDUCIBLE 1 (OXI1) kinase. Here, we identify two negative regulators of light-induced PCD that modulate OXI1 expression: DAD1 and DAD2, homologs of the human antiapoptotic protein DEFENDER AGAINST CELL DEATH. Overexpressing OXI1 in Arabidopsis (Arabidopsis thaliana) increased plant sensitivity to high light and induced early senescence of mature leaves. Both phenomena rely on a marked accumulation of jasmonate and salicylate. DAD1 or DAD2 overexpression decreased OXI1 expression, jasmonate levels, and sensitivity to photooxidative stress. Knock-out mutants of DAD1 or DAD2 exhibited the opposite responses. Exogenous applications of jasmonate upregulated salicylate biosynthesis genes and caused leaf damage in wild-type plants but not in the salicylate biosynthesis mutant Salicylic acid induction-deficient2, indicating that salicylate plays a crucial role in PCD downstream of jasmonate. Treating plants with salicylate upregulated the DAD genes and downregulated OXI1 We conclude that OXI1 and DAD are antagonistic regulators of cell death through modulating jasmonate and salicylate levels. High light-induced PCD thus results from a tight control of the relative activities of these regulating proteins, with DAD exerting a negative feedback control on OXI1 expression.


Assuntos
Apoptose/genética , Proteínas de Arabidopsis/genética , Arabidopsis/genética , Ciclopentanos/metabolismo , Oxilipinas/metabolismo , Fosfolipases A1/genética , Proteínas Serina-Treonina Quinases/genética , Ácido Salicílico/metabolismo , Apoptose/efeitos da radiação , Arabidopsis/citologia , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Vias Biossintéticas/efeitos dos fármacos , Vias Biossintéticas/genética , Vias Biossintéticas/efeitos da radiação , Ciclopentanos/farmacologia , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Luz , Mutação , Oxilipinas/farmacologia , Fosfolipases A1/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Folhas de Planta/citologia , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Ácido Salicílico/farmacologia , Oxigênio Singlete/metabolismo
13.
Toxins (Basel) ; 10(12)2018 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-30518046

RESUMO

Adenylate cyclase toxin (ACT, CyaA) is one of the important virulence factors secreted by the whooping cough bacterium Bordetella pertussis, and it is essential for the colonization of the human respiratory tract by this bacterium. Cytotoxicity by ACT results from the synergy between toxin's two main activities, production of supraphysiological cAMP levels by its N-terminal adenylate cyclase domain (AC domain), and cell membrane permeabilization, induced by its C-terminal pore-forming domain (hemolysin domain), which debilitate the host defenses. In a previous study we discovered that purified ACT is endowed with intrinsic phospholipase A1 (PLA) activity and that Ser in position 606 of the ACT polypeptide is a catalytic site for such hydrolytic activity, as part of G-X-S-X-G catalytic motif. Recently these findings and our conclusions have been directly questioned by other authors who claim that ACT-PLA activity does not exist. Here we provide new data on ACT phospholipase A1 characteristics. Based on our results we reaffirm our previous conclusions that ACT is endowed with PLA activity; that our purified ACT preparations are devoid of any impurity with phospholipase A activity; that ACT-S606A is a PLA-inactive mutant and thus, that Ser606 is a catalytic site for the toxin hydrolytic activity on phospholipids, and that ACT-PLA activity is involved in AC translocation.


Assuntos
Toxina Adenilato Ciclase/metabolismo , Fosfolipases A1/metabolismo , Toxina Adenilato Ciclase/genética , Animais , Bordetella pertussis , Compostos de Boro/metabolismo , Linhagem Celular , AMP Cíclico/metabolismo , Escherichia coli/enzimologia , Escherichia coli/genética , Lipossomos , Lisofosfolipídeos/metabolismo , Camundongos , Mutação , Fosfolipases A1/genética
14.
Biochemistry ; 57(39): 5759-5767, 2018 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-30221923

RESUMO

Deleterious mutations in the serine hydrolase DDHD domain containing 1 (DDHD1) cause the SPG28 subtype of the neurological disease hereditary spastic paraplegia (HSP), which is characterized by axonal neuropathy and gait impairments. DDHD1 has been shown to display PLA1-type phospholipase activity with a preference for phosphatidic acid. However, the endogenous lipid pathways regulated by DDHD1 in vivo remain poorly understood. Here we use a combination of untargeted and targeted metabolomics to compare the lipid content of brain tissue from DDHD1+/+ and DDHD1-/- mice, revealing that DDHD1 inactivation causes a substantial decrease in the level of polyunsaturated lysophosphatidylinositol (LPI) lipids and a corresponding increase in the level of phosphatidylinositol (PI) lipids. Levels of other phospholipids were mostly unchanged, with the exception of decreases in the levels of select polyunsaturated lysophosphatidylserine (LPS) and lysophosphatidylcholine lipids and a striking remodeling of PI phosphates (e.g., PIP and PIP2) in DDHD1-/- brain tissue. Biochemical assays confirmed that DDHD1 hydrolyzes PI/PS to LPI/LPS with sn-1 selectivity and accounts for a substantial fraction of the PI/PS lipase activity in mouse brain tissue. These data indicate that DDHD1 is a principal regulator of bioactive LPI and other lysophospholipids, as well as PI phosphates, in the mammalian nervous system, pointing to a potential role for these lipid pathways in HSP.


Assuntos
Encéfalo/metabolismo , Lisofosfolipídeos/metabolismo , Fosfolipases A1/genética , Fosfolipases/genética , Animais , Metabolômica , Camundongos Knockout , Medula Espinal/metabolismo
15.
J Biotechnol ; 281: 130-136, 2018 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-29981449

RESUMO

A self-assembling peptide (27PEP) was isolated from an open reading frame (ORF). The ORF consisted of an unknown functional domain and a catalytic (lipolytic and phospholipolytic) domain (MPlaG) on metagenomic fosmid clone. This extension of 27 amino acids prior to the N-terminus of the catalytic domain (27PEP-MPlaG), starting at Met261, produced an aggregate of high molecular weight (> 700 kDa). Compared with MPlaG, 27PEP-MPlaG showed the same temperature and pH effect for maximum activity but was stable in the presence of inhibitors such as EDTA and PMSF. The 27PEP-MPlaG exhibited lower specific activity than that of MPlaG, but when pre-incubated for 30 min at temperatures between 4 and 100 °C, its activity increased at temperatures greater than 40 °C under alkaline conditions and eventually reached the specific activity level of MPlaG at 60 °C. We experimentally determined that the aggregate caused by 27PEP was dissociated at elevated temperatures resulting in an active catalytic monomer. The 27PEP-indued aggregation may be attractive as application tool for improving or engineering of biocatalysts and biomaterials.


Assuntos
Peptídeos , Fosfolipases A1 , Agregados Proteicos , Aminoácidos/química , Domínio Catalítico , Estabilidade Enzimática , Escherichia coli/genética , Escherichia coli/metabolismo , Concentração de Íons de Hidrogênio , Lipólise , Peptídeos/química , Peptídeos/genética , Peptídeos/metabolismo , Fosfolipases A1/química , Fosfolipases A1/genética , Fosfolipases A1/metabolismo , Temperatura
16.
Cell Death Dis ; 9(8): 797, 2018 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-30038238

RESUMO

DDHD2/KIAA0725p is a mammalian intracellular phospholipase A1 that exhibits phospholipase and lipase activities. Mutation of the DDHD2 gene causes hereditary spastic paraplegia (SPG54), an inherited neurological disorder characterized by lower limb spasticity and weakness. Although previous studies demonstrated lipid droplet accumulation in the brains of SPG54 patients and DDHD2 knockout mice, the cause of SPG54 remains elusive. Here, we show that ablation of DDHD2 in mice induces age-dependent apoptosis of motor neurons in the spinal cord. In vitro, motor neurons and embryonic fibroblasts from DDHD2 knockout mice fail to survive and are susceptible to apoptotic stimuli. Chemical and probe-based analysis revealed a substantial decrease in cardiolipin content and an increase in reactive oxygen species generation in DDHD2 knockout cells. Reactive oxygen species production in DDHD2 knockout cells was reversed by the expression of wild-type DDHD2, but not by an active-site DDHD2 mutant, DDHD2 mutants related to hereditary spastic paraplegia, or DDHD1, another member of the intracellular phospholipase A1 family whose mutation also causes spastic paraplegia (SPG28). Our results demonstrate the protective role of DDHD2 for mitochondrial integrity and provide a clue to the pathogenic mechanism of SPG54.


Assuntos
Apoptose , Fosfolipases A1/genética , Espécies Reativas de Oxigênio/metabolismo , Paraplegia Espástica Hereditária/patologia , Trifosfato de Adenosina/metabolismo , Animais , Apoptose/efeitos dos fármacos , Cardiolipinas/metabolismo , Células Cultivadas , Modelos Animais de Doenças , Fibroblastos/citologia , Fibroblastos/metabolismo , Humanos , Camundongos , Camundongos Knockout , Mitocôndrias/metabolismo , Neurônios Motores/citologia , Neurônios Motores/metabolismo , Fosfolipases , Fosfolipases A1/deficiência , Paraplegia Espástica Hereditária/genética , Medula Espinal/metabolismo , Medula Espinal/patologia , Estaurosporina/farmacologia
17.
Artigo em Inglês | MEDLINE | ID: mdl-29868507

RESUMO

Lipids from microorganisms are ligands of Toll like receptors (TLRs) and modulate the innate immune response. Herein, we analyze in vitro the effect of total lipid extracts from Trypanosoma cruzi amastigotes of RA and K98 strains (with polar biological behavior) on the induction of the inflammatory response and the involvement of TLRs in this process. We demonstrated that total lipid extracts from both strains induced lipid body formation, cyclooxygenase-2 expression and TNF-α and nitric oxide release in macrophages, as well as NF-κB activation and IL-8 release in HEK cells specifically through a TLR2/6 dependent pathway. We also evaluated the inflammatory response induced by total lipid extracts obtained from lysed parasites that were overnight incubated to allow the action of parasite hydrolytic enzymes, such as Phospholipase A1, over endogenous phospholipids. After incubation, these total lipid extracts showed a significantly reduced pro-inflammatory response, which could be attributed to the changes in the content of known bioactive lipid molecules like lysophospholipids and fatty acids, here reported. Moreover, analyses of total fatty acids in each lipid extract were performed by gas chromatography-mass spectrometry. Our results indicate a relevant role of T. cruzi lipids in the induction of a pro-inflammatory response through the TLR2/6 pathway that could contribute to the modulation of the immune response and host survival.


Assuntos
Lipídeos/imunologia , Receptor 2 Toll-Like/imunologia , Receptor 6 Toll-Like/imunologia , Receptores Toll-Like/imunologia , Trypanosoma cruzi/metabolismo , Animais , Ciclo-Oxigenase 2/metabolismo , Citocinas/metabolismo , Ácidos Graxos/imunologia , Células HEK293 , Humanos , Imunidade Inata , Interleucina-8/metabolismo , Gotículas Lipídicas , Lipopolissacarídeos/imunologia , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , NF-kappa B/metabolismo , Óxido Nítrico/metabolismo , Fosfolipases A1/genética , Fosfolipases A1/metabolismo , Proteínas Recombinantes , Trypanosoma cruzi/genética , Fator de Necrose Tumoral alfa/metabolismo
18.
BMC Microbiol ; 18(1): 33, 2018 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-29661138

RESUMO

BACKGROUND: Many gram-negative bacteria produce an outer membrane phospholipase A (PldA) that plays an important role in outer membrane function and is associated with virulence. RESULTS: In the current study, we characterized a pldA mutant of Coxiella burnetii, an intracellular gram-negative pathogen and the agent of human Q fever. The C. burnetti pldA open reading frame directs synthesis of a protein with conserved PldA active site residues. A C. burnetii ΔpldA deletion mutant had a significant growth defect in THP-1 macrophages, but not axenic medium, that was rescued by complementation. Thin layer chromatography was employed to assess whether pldA plays a role in remodeling membrane lipids during C. burnetii morphological differentiation. Extracted lipids were analyzed from replicating, logarithmic phase large cell variants (LCVs), non-replicating, stationary phase small cell variants (SCVs), and a mixture of LCVs and SCVs. Similar to Escherichia coli, all three forms contained cardiolipin (CL), phosphatidylglycerol (PG) and phosphatidylethanolamine (PE). However, PE and PG were present in lower quantities in the SCV while three additional lipid species were present in higher quantities. Co-migration with standards tentatively identified two of the three SCV-enriched lipids as lyso-phosphatidylethanolamine, a breakdown product of PE, and free fatty acids, which are generally toxic to bacteria. Developmental form lipid modifications required the activity of PldA. CONCLUSIONS: Collectively, these results indicate developmentally-regulated lipid synthesis by C. burnetii contributes to colonization of macrophages and may contribute to the environmental stability and the distinct biological properties of the SCV.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Coxiella burnetii/enzimologia , Coxiella burnetii/crescimento & desenvolvimento , Metabolismo dos Lipídeos , Macrófagos/microbiologia , Lipídeos de Membrana/metabolismo , Fosfolipases A1/metabolismo , Proteínas da Membrana Bacteriana Externa/genética , Proteínas de Bactérias/metabolismo , Coxiella burnetii/genética , Coxiella burnetii/patogenicidade , Citoplasma/microbiologia , Escherichia coli/metabolismo , Ácidos Graxos/metabolismo , Genes Bacterianos/genética , Humanos , Fases de Leitura Aberta/genética , Fosfolipases A1/genética , Febre Q/microbiologia , Deleção de Sequência , Células THP-1 , Fatores de Virulência/metabolismo
19.
Toxicon ; 148: 74-84, 2018 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-29605550

RESUMO

Vespa tropica, a social wasp locally found in Thailand is responsible for many out off the record accidental stings due to close encounters with human activities and because of the animal's highly potent venom. Phospholipase (PLA) is one of the major proteins commonly found in insect venom. In this work, V. tropica phospholipase was successfully isolated, purified and characterized. Three isoforms PLAs have been purified using reversed phase HPLC, and are named VesT1s (VesT1.01a, VesT1.01b and VesT1.02). They are not glycoproteins. VesT1.01s has a molecular weight of 33.72 kDa while for VesT1.02 a mass of 34 kDa was found. The deduced sequence of the mature VesT1.02 protein is composed of 301 amino acid residues (1005 bp), including the catalytic triad (Ser-His-Asp), which is similar to other wasp venom PLAs. The 12 cysteine residues found are conserved among venom PLA1. They form six disulfide bonds, and therefore have no free sulfhydryl groups. Based on homology modelling, VesT1.02 belongs to the α/ß hydrolase fold family. Its structure is composed of 10 ß-sheets and 11 α-helixes, characterized by a ß-strand/εSer/α-helix structural motif, which contains the Gly-X-Ser-X-Gly consensus sequence. The shortened lid and shortened ß9 loop, which play important roles in substrate selectivity, cause this enzyme to only exhibit PLA activity. Moreover, these PLAs have been shown to be highly thermally stable after heating at 100 °C for 5 min. We propose that an inserted Pro residue might be involved in this high thermo-stability.


Assuntos
Fosfolipases A1/química , Venenos de Vespas/enzimologia , Vespas/química , Sequência de Aminoácidos , Animais , Proteínas de Insetos , Modelos Moleculares , Fosfolipases A1/genética , Fosfolipases A1/isolamento & purificação , Isoformas de Proteínas , Análise de Sequência de DNA , Homologia Estrutural de Proteína , Tailândia , Venenos de Vespas/química , Vespas/genética
20.
Microb Pathog ; 115: 257-263, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29274458

RESUMO

The aim of the study was to determine the prevalence of virulence genes responsible for the adhesion (flaA, cadF and racR) and invasion (virB11, iam and pldA) in Campylobacter isolates from cattle and swine and determine their adherence and invasion abilities. The studies conducted revealed high prevalence rate of adherence and invasion associated genes irrespective of the isolates origin. All Campylobacter strains of swine and cattle origin adhered to HeLa cells at mean level 0.1099% ±â€¯SD 0.1341% and 0.0845% ±â€¯SD 0.1304% of starting viable inoculum, respectively. However swine isolates exhibited higher invasion abilities (0.0012% ±â€¯SD 0.0011%) compared to bovine isolates (0.00038% ±â€¯SD 0.00055%). The results obtained revealed significantly positive correlation between invasion and adherence abilities of swine origin isolates (R = 0.4867 in regard to C. jejuni and R = 0.4507 in regard to C. coli) and bovine origin isolates (R = 0.726 in regard to C. jejuni). Bacterial virulence is multifactorial and it is affected by the expression of virulence genes. Moreover the presence of virulence genes determines the ability of Campylobacter isolates to adhere and invade the cells.


Assuntos
Aderência Bacteriana/genética , Campylobacter coli/genética , Campylobacter coli/patogenicidade , Campylobacter jejuni/genética , Campylobacter jejuni/patogenicidade , Fatores de Virulência/genética , Animais , Proteínas da Membrana Bacteriana Externa/genética , Proteínas de Bactérias/genética , Infecções por Campylobacter/microbiologia , Infecções por Campylobacter/patologia , Campylobacter coli/isolamento & purificação , Campylobacter jejuni/isolamento & purificação , Proteínas de Transporte/genética , Bovinos , Linhagem Celular Tumoral , Flagelina/genética , Microbiologia de Alimentos , Células HeLa , Humanos , Fosfolipases A1/genética , Polônia , Carne Vermelha/microbiologia , Proteínas Repressoras/genética , Suínos , Transativadores/genética , Virulência/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA